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ABSTRACT The spatial distributionof immature stages of thecranberry fruitworm,Acrobasis vacinii
Riley, and cherry fruitworm, Grapholitha packardii Zeller was studied in Michigan blueberry farms.
Single blueberry plants or individual clusters of fruit were compared as sampling units. Distributions
of eggs and larvae at each sampling date were described by Þtting data to either Poisson (random)
or negative binomial (aggregated) distributions, and by calculating parameters of TaylorÕs power law.
Additionally, twomethodswere used to calculate optimal sample sizes for use in future pest sampling.
In one approach, TaylorÕs power law parameters were used to compute optimal sample sizes needed
to estimate populations at two Þxed-precision levels, 10 or 20%. In another method, the minimum
number of samples required to collect at least one insect in 95% of samples was calculated. Results
based on TaylorÕs power law parameters suggest that prohibitively large sample sizes would be
required for even 20% precision, whereas the other method required substantially fewer samples and
may thus be of more practical value in a pest monitoring program. All insect populations varied
between aggregated and random distributions over the season, but A. vaccinii eggs and larvae were
moreoften aggregated thanG.packardii.Analysis ofwithin-Þelddistributionof fruitwormpopulations
showed that A. vaccinii eggs were signiÞcantly more abundant in blueberries closer to woods when
populationswere at their peak. The distribution of eggs suggests that adjacentwooded habitats, which
often contain wild hosts of this insect, may provide a source for individuals that colonize commercial
Þelds.
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MICHIGAN IS THE major producer of highbush blueber-
ries in the United States, with an annual production of
�65 million pounds of fruit, comprising 40% of the
1999 crop (Anonymous 2000). Blueberries in Michi-
gan and other regions of North America suffer fre-
quent infestationbyacomplexofberry-boring insects,
of which larvae of the cranberry fruitworm, Acrobasis
vacinii Riley, and the cherry fruitworm, Grapholitha
packardii Zeller, are the dominant species. Larvae of
A. vaccinii infest fruit of a range of berry bearing
plants, including cranberries, blueberries, beach
plums, huckleberries, and dangle-berries throughout
eastern North America, and westward to Wisconsin
and Texas (Beckwith 1941, Neunzig 1986). In blue-
berries, larvae develop within the berries of a single
cluster, and later in the season leavewebbing and frass
on the cluster (Hutchinson 1954). This damage and
evidence of activity makes them the most economi-
cally important insect pest during the early part of the
growing season in Michigan blueberries.

Grapholitha packardii is relatively less of a pest
because it feeds on one or two berries and does not

web fruit together. This species has been recorded on
apple, cherry, hawthorn, and blueberry (Chapman
and Lienk 1971). It is present at most commercial
blueberry farms, and can be the dominant fruitworm
at some sites (R.I., unpublished data). In Michigan,
both species are univoltine, and larvae of A. vaccinii
overwinter as diapausing hibernaculae under a light
layer of soil and leaf litter, while G. packardii pupates
on the plant. Adults of both species emerge from early
May to mid-July, and are active nocturnally. Both
species deposit single eggs in the calyx cup of unripe
berries (Hutchinson 1954, Tomlinson 1970).
Tolerance among blueberry buyers for insect con-

tamination is extremely low. If more than one cran-
berry fruitworm larva is detected in a sample of four
pints of fruit from a single pallet on a shipment of
blueberries, the entire pallet is rejected (D. Trinka,
Michigan Blueberry Growers Association, personal
communication). In response to the low threshold and
Þnancial risk of detecting fruitworm contamination,
management is currently based on prophylactic in-
secticide applications in response to captures of adult
moths in pheromone traps. A sampling scheme for
eggs or larvae and a decision-making protocol could1 E-mail: isaacsr@msu.edu.
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reduce insecticide treatments for fruitworms by min-
imizing applications to Þelds where they are not nec-
essary.
Obtaining information on the abundance and spa-

tial distribution of an insect pest is an essential step in
the development of sampling protocols that will drive
pestmanagement decision-making (Binns et al. 2000).
Fruitworm populations in Michigan blueberries are
variable between years, between and within farms,
and in the timing of their damage. Consequently, a
reliable sampling scheme would provide decision-
makers with a method of deciding when, and where,
intervention is required, and thus avoid unnecessary
insecticide applications at sites where fruitworm pop-
ulations are low enough not to warrant the expense.
Althoughpheromone lures arecommercially available
for monitoring males of cranberry fruitworm (Mc-
Donough et al. 1994) and cherry fruitworm (Roelofs
et al. 1969), they are used to alert growers to the start
of adult emergence rather than to predict population
size. However, the timing of the Þrst chemical control
is often made at petal fall when the calyx cup ovipo-
sition site becomes accessible to female fruitworms,
rather than if these insects are detected. The egg or
early larval stages of development offer other stages to
sample that may provide a more reliable measure of
infestation potential, once adult populations have
been detected with pheromone traps.
Whole plant or individual berry clusters are obvious

potential sampling units that could be employed in
blueberry Þelds. Visually surveying entire mature
blueberry plants (a likely approach in such a high
value crop, where destructive sampling would not be
permitted by most growers) is inherently more time-
consuming and labor-intensive than examining single
fruit clusters. Therefore, the latter sampling unit may
be more attractive to commercial pest managers in
terms of incorporation into a decision-making com-
ponent of fruitworm management.
Determining the spatial distribution of a pestsÕ life

stages allows the calculation of optimal sample sizes
required to estimate population abundance at given
levels of precision, deÞned as a Þxed proportion of the
mean(Southwood1987, Pitcairn et al. 1994, Lindblade
et al. 2000). This is an important Þrst step in the
development of a sequential sampling scheme. An
alternative approach is to calculate the minimum
number of samples needed to observe at least one
insect in a Þxed proportion of the samples collected.
In other words, this approach could be used to esti-
mate the number of samples needed to achieve a 95%
probability of obtaining at least one pest individual
(Wilson and Room 1983, Pitcairn et al. 1994). This
latter method provides a basis for a binomial pest
sampling scheme, in which the presence of pest indi-
viduals (and not the absolute number) is the variable
of interest. In this study, we examined the utility of
both of these approaches to sample size calculation in
the blueberry crop system.
Another issue of importance in sampling lepidop-

teran pests of herbaceous fruit crops is that they are
often more abundant at the border of commercial

crops, because of the movement of adults and larvae
from surrounding habitats (Rabb 1985). Most high-
bushblueberry production in theUnited States occurs
in low-lying habitats that consist of cleared woods or
riparian areas. As a result, blueberry Þelds have
wooded edges that often contain wild blueberries and
other hosts for the fruitworm species in question.
These plants may serve as a source of pest individuals
colonizing commercial crops. For this reason, the de-
velopment of an effective sampling scheme will re-
quire an understanding of the distribution of pest
infestation relative to adjacent wooded habitat. There
are currently no published data on the spatial distri-
bution of A. vaccinii or G. packardii in blueberry or
other types of agroecosystems.
The study reported here had the following four

objectives: (1) to describe the distribution of eggs and
larvae of A. vaccinii and G. packardii using blueberry
plants and individual berry clusters as the sampling
units; (2) determine optimal sample sizes needed to
estimate absolute pest egg and larval abundance using
either sampling unit; (3) determine the number of
samples of either unit needed to ensure a 95% prob-
ability of obtaining at least onepest individual, and(4)
to determine whether fruitworm population distribu-
tion is inßuenced by location relative to adjacent
wooded habitats.

Materials and Methods

Population Sampling. Two blueberry Þelds at each
of six blueberry farms inVanBuren andAllegan coun-
ties in Michigan were surveyed for this study. Fields
contained either Bluecrop or Elliott cultivars, both of
which are relatively late-maturing varieties. To
achieve a range of fruitworm population densities
throughout the sites, we chose to use three farms that
were conventionally managed (with broad-spectrum
insecticides) and three that were minimally managed
(withno insecticideuseoronlyBacillus thuringiensis).
Sampling of eggs and larvae began in mid-May 2000,
when these insects typically begin oviposition, and
was repeated weekly for eight weeks, until the end of
July, when sites at the commercial farms were har-
vested. Analyses for each week are reported sepa-
rately. To sample for eggs and larvae, six plants were
sampled in each of 10 rows, to provide a 60-plant
sample per Þeld. Plants were sampled from every
other row, and every other plant was sampled within
a row, to provide a total sample area of 20 rows � 12
plants (�60 by 24m). Each sampling area was located
within a blueberry Þeld adjacent to a wooded border,
with the Þrst plants sampled at the edges of the Þeld
nearest the woods.
Fruitwormswere sampled fromarandomly selected

cluster in the top half of each plant described above,
and from the whole plant. In whole-plant surveys, an
observer visually scanned multiple clusters on each
plant for one minute, and all fruitworm eggs or larval
damagewas recorded. Trained observers were able to
Þnd the eggs within the restricted sample area, but
since the eggs are small and laid individually, hand
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lenses (16�magniÞcation)wereused to conÞrm their
species identity. Cranberry fruitworm eggs are un-
evenly ovoid, white when newly laid, turning more
orange whenmature. In contrast, eggs of cherry fruit-
worm are much ßatter, spherical, mostly clear, and
have a shiny exterior. Eggs of both species are laid
primarily in the calyx cup, with a small percentage of
G. packardii eggs laid on the outer edge of the rim of
the calyx cup (R.I., unpublished data), providing a
speciÞc site for sampling eggs within blueberry clus-
ters. Larval presence was identiÞed by locating entry
holes early in the season, and by the presence of
webbing and/or frass on clusters later in the season. In
single-cluster surveys, a clusterwasvisually scanned in
the same manner and left on the plant. Three observ-
ers were deployed for each weekly survey. To record
ßight activity of adult moths, commercially available
pheromone traps (Great Lakes integrated pest man-
agement [IPM], Vestaburg, MI) were baited with ei-
ther cranberry fruitworm or cherry fruitworm pher-
omone, and were placed along the perimeter and on
the inside edge of each grid sampled for eggs and
larvae. The number of moths trapped was counted
weekly, and the lures were changed monthly.

Statistical Analysis. Insect populations are fre-
quently aggregated in their spatial distribution, pro-
ducing clumped distribution patterns that are often
described well by the negative binomial distribution
(Southwood 1987). However, at low densities, counts
of individuals can appear more random, and a Poisson
distribution may provide a better Þt (Taylor et al.
1978). Both fruitworm species in this study lay solitary
eggs and the visual apparency of these species often
increases dramatically as the season progresses as egg
abundance and subsequent larval damage increase.
Therefore, both the negative binomial and Poisson
distributions were Þtted to the data obtained on each
sampling date. Chi-square goodness-of-Þt tests were
used to compare theobserveddistributionof thenum-
ber of insects per sampling unit to the expected fre-
quencies under either the negative binomial or Pois-
son distributions (Bailey 1995, Southwood 1987).
Spatial distribution patterns of egg and larval fruit-

worm populations were examined by Þtting data from
each sampling date to TaylorÕs power law (Taylor
1961). This is based on the observation that in aggre-
gated populations, the variance among samples in-
creases as a function of density. Taylor (1961) dem-
onstrated this relationship between the variance (s2)
and the mean (m), using the power function:

s2 � amb.

The parameters a and b were obtained by a regres-
sion of the log10 of the variance against the log10 of the
mean. The intercept of the resulting regression equa-
tion is the log10 of a, while the slope is b. Parameter
estimates were calculated and reported for weekly
counts of fruitworm eggs from the Þrst four weeks of
sampling, and for weekly counts of fruitworm larvae
from the last four weeks of the total eight-week sam-
plingperiod.Theparameterbprovides informationon
the nature of population distribution. Values of b �1

indicate clumped (aggregated) populations, b � 1
indicates random distribution, and b �1 indicates uni-
form distribution. A t-test was used to determine if b
was signiÞcantly different from 1.
TaylorÕs power law was also used to determine the

number of each type of sampling unit needed to pro-
duce a Þxed level of precision, in situations where
distributions are either Poisson, normal, or negative
binomial (Wilson andRoom1983, Pitcairn et al. 1994).
In this approach, optimal sample size is calculated as
follows:

n � �Z�/2/D�2 � am�b�2�,

where n is the optimal sample size, Z�/2 is the upper
�/2 of the standard normal distribution, � is a set level
of conÞdence required for the sample size, and D is a
Þxed proportion of the absolute mean of the popula-
tion involved. It is also known as the allowable error,
or Þxed-precision level, with which the mean is mea-
sured (Lindblade et al. 2000). We used a 95% conÞ-
dence interval, so that � � 0.05 and Z�/2 � 1.96 when
n � 30. We calculated sample sizes based on two
values of D; 10 and 20%.
In addition to this approach, sample sizes needed to

obtaina95%probabilityofobtainingat leastone insect
per sample can also be calculated based on

	P(0)]
n�0.95�1,

where P(0) is the probability of observing zero insects
per sample and n is the sample size (Pitcairn et al.
1994). From this expression one can derive n as

n � loge(1 � 0.95)/loge(P(0)),

We estimated P(0) after Pitcairn et al. (1994). If a
population Þts a Poisson distribution, then

P(0)�e�m,

where m is the observed population mean. If a nega-
tive binomial population is assumed, P(0) can be cal-
culatedbasedonTaylorÕs power law, usingderivations
byWilson andRoom(1983) and Pitcairn et al. (1994).
Here,

P�0� � �1 � �amb � m�/m��m2/�amb�m�

where a and b are TaylorÕs power law parameters. The
use of each computation approach (outlined above)
was based on results of the chi-square tests of distri-
bution Þts to the data. If a dual Þt of both Poisson and
negative binomial distributions was indicated, the for-
mula based on an assumption of a negative binomial
distribution was used, because sample sizes required
for this type of distribution are always higher than
those needed for populations in a Poisson distribution
(Hayek and Buzas 1997). Therefore, this approach
provided a conservative estimate of sample size.
The effect of plant location within Þelds, as a Þxed

treatment,was testedwith repeated-measures analysis
of variance (ANOVA) (using PROC MIXED, SAS
Institute 1996). Before analysis, data were log10 trans-
formed to correct for departures from normality.
AkaikeÕs Information Criterion was used to select the
covariance structure with the best Þt to the repeated-
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measures data (Little et al. 1997). Analyses were per-
formed on the Þrst four weeksÕ data for egg abundance,
and the data for the last 4 wk for larval abundance.

Results

Both fruitworm species were detected at all twelve
blueberryÞelds sampled, andabundancevariedacross

these sites. The phenology of A. vaccinii (Fig. 1a) was
similar to that ofG. packardii (Fig. 1b); Þrst ßight, Þrst
egg, and Þrst signiÞcant larval damage of the two
species all occurred within a week. In all sites, G.
packardii populations were far less abundant than
those of A. vaccinii (Fig. 1; Table 1). For both fruit-
worm species, there was a four week period during
which eggs were detected (23 MayÐ20 June), and
larval populations were most abundant between 27
June and 18 July. This indicates that there were dis-
tinct and similar periods during the population devel-
opment of these two fruitworm specieswhen eggs and
larvae are present for sampling.
Sampling from either the whole plants or single

clusters showed similar ßuctuations in mean egg and
larval populations over the sampling dates (Table 1).
Chi-square tests indicated that the negative binomial
distribution provided a good Þt to the egg and larval
countdata, regardless of samplingunit used.However,
data from single-cluster samples of G. packardii eggs
and larvae were also described well by the Poisson
distribution(Table1).ThisdualityofÞt toPoissonand
negative binomial distributions was also observed for
A.vacciniieggcounts fromthewhole-plant sampleson
some dates (Table 1).
Application of TaylorÕs power law to data from

whole-plant samples yielded b � 1 on most dates for
both fruitworm species (Table 2), indicating a
clumped (negative binomial) distribution. These re-
sults were thus in general agreementwith those of the
chi-square tests. Data from single-cluster samples,
however, produced b coefÞcients that were often sig-
niÞcantly less than one, suggesting a uniform distri-
butionwhere random distribution had been indicated
by the chi-square tests. However, in the case of A.

Fig. 1. Phenology of adults, eggs, and larvae of (a) A.
vaccinii and(b)G.packardii inMichiganhighbushblueberry
Þelds during 2000. Results of egg and larval populations are
from whole-plant surveys.

Table 1. Goodness-of-fit parameters for either the Poisson or negative binomial distributions, derived from counting A. vaccinii and
G. packardii eggs and larvae, from either whole-plant or single-cluster samples

Whole-plant samples Single-cluster samples

Date
Life
stage

Mean no.
per plant

s2a � (p)b � (nb)c Mean no./cluster s2a � (p)b � (nb)c

A. vaccinii

30 May Eggs 0.13 0.191 31.42 0.533* 0.11 0.129 3.84 0.7*
6 June Eggs 0.05 0.052 1.00* 0* 0.09 0.118 6.11 0.8*
13 June Eggs 0.02 0.017 0.11* 0* 0.03 0.02 0.04* 0.01*
20 June Eggs 0.01 0.031 5360.2 3.92* 0.02 0.02 0.02* 0.0*
27 June Larvae 0.23 0.38 39.98 0.525* 0.14 0.142 0.07* 0.06*
4 July Larvae 0.69 7.14 257.38 12.86* 0.26 0.3 2.49 1.69*
11 July Larvae 0.97 4.96 735.97 15.08* 0.35 0.448 8.7 3.88*
18 July Larvae 1.25 13.99 1311.45 11.78* 0.22 0.272 7.61 3.22*

G. packardii

30 May Eggs 0.09 0.1 5.62 0.85* 0.08 0.084 0.34* 0.07*
6 June Eggs 0.09 0.1 5.66 0.85* 0.16 0.151 0.13* 0.02*
13 June Eggs 0.04 0.042 5.4 0.23* 0.05 0.065 5.67 0.36*
20 June Eggs 0.01 0.017 16.89 0.24* 0.02 0.02 0.02* 0.01*
27 June Larvae 0.07 0.1 23.45 0.35* 0.05 0.048 0.13* 0.0*
4 July Larvae 0.04 0.05 6.01 0.27* 0.03 0.03 0.05* 0.0*
11 July Larvae 0.07 0.128 55.72 0.17* 0.03 0.025 0.04* 0.0*
18 July Larvae 0.04 0.056 114.6 1.08* 0.02 0.017 0.017* 0.0*

Values followed by an asterisk show a signiÞcant Þt to the distribution (P � 0.05).
a Variance.
b Chi-square value for the Poisson distribution.
c Chi-square value for negative binomial distribution.
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vaccinii eggs, even single-cluster samples showed b
values�1 for theÞrst samplingdate, a result consistent
with all other analyses.
When data were analyzed using TaylorÕs power law

to determine the optimal sample sizes, very large val-
ues of nwere calculated (Table 2). For example, even
when insect eggs were comparatively abundant, as
was the case for A. vaccinii on 30 May, over 19,000
whole-plant samples and over 37,000 cluster samples
would be needed to obtain 20% Þxed-precision in
sampling, and sample sizes needed for 10% precision
are often orders of magnitude greater (Table 2). The
large number of samples required for even 20% pre-
cision of the absolute population means is a result of
the very low population density for eggs and larvae of
these species (see mean values in Table 1).
Analyses to determine the number of samples

needed to observe at least one insect in 95 out of 100
samples showed that the required sample size was
considerably lower than that calculated for obtaining

estimates of the population mean. Using whole-plant
samples, only 16 samples were needed to achieve a
95% probability of observing one A. vaccinii egg in
every sample, and even with the single-cluster sam-
plingmethod, only 20 sampleswere needed (Table 2).
Sample size requirements for single-cluster sampling
units were higher but were never �200 for any life
stage of either fruitworm species. Sample sizes needed
for 95% probability of obtaining eggs in every sample
never exceeded 50 for either species, for either sam-
pling unit (Table 2).
Repeated-measures analysis of the effect of plant

locationwithinÞeldson fruitwormabundanceyielded
different results for each species. Analysis of whole
plant samples showed that the abundance of A. vac-
cinii eggs varied with plant location within the Þelds
(F � 2.33; df� 5, 684; P � 0.041).A. vaccinii eggswere
most abundant adjacent to the wooded borders, with
abundance decreasing with distance from the edge
(Fig. 2a).However, thiswasnot the case forA. vaccinii

Table 2. Taylor’s law parameters and optimal sample sizes for whole-plant and single-cluster samples of A. vaccinii and G. packardii
eggs and larvae

Insect stage Date r2 df aa ba SE (b) n1b n2c n3d

Whole plant samples

A. vaccinii
Eggs 30 May 0.94 7 1.01 1.30* 0.113 78,337 19,584 16
Eggs 6 June 0.96 10 1.01 1.09 0.070 1,673,615 418,404 47
Eggs 13 June 1.00 10 1.00 0.97* 0.005 88,405,253 22,101,313 176
Eggs 20 June 0.92 10 1.00 1.97* 0.166 2,466,647 616,662 53
Larvae 27 June 0.97 10 1.01 121* 0.064 21,560 5,390 11
Larvae 4 July 0.99 10 1.15 2.42* 0.069 775 194 4
Larvae 11 July 0.98 10 1.00 1.33* 0.061 385 96 3
Larvae 18 July 0.99 10 1.07 1.88* 0.053 252 63 3

G. packardii
Eggs 30 May 0.97 7 1.01 0.99 0.063 458,451 114,613 32
Eggs 6 June 0.98 10 1.01 1.20* 0.057 364,395 91,099 27
Eggs 13 June 0.98 10 1.00 1.12* 0.054 4,794,922 1,198,730 66
Eggs 20 June 0.99 10 1.00 1.26* 0.040 52,797,062 13,199,265 135
Larvae 27 June 0.91 10 1.00 1.12* 0.108 599,255 149,814 33
Larvae 4 July 0.99 10 1.00 1.06* 0.029 3,913,497 978,374 63
Larvae 11 July 1.00 10 1.01 1.45* 0.024 385,070 96,267 26
Larvae 18 July 0.95 10 1.00 1.11* 0.073 3,655,976 913,994 60

Single cluster samples

A. vaccinii
Eggs 30 May 0.93 7 1.00 1.30* 0.117 149,524 37,381 20
Eggs 6 June 1.00 10 1.00 0.95* 0.005 431,134 107,783 30
Eggs 13 June 1.00 10 1.00 1.00 0.000 14,231,425 3,557,856 100
Eggs 20 June 1.00 10 1.00 0.98 0.000 51,929,191 12,982,298 150
Larvae 27 June 1.00 10 1.00 0.85* 0.020 188,456 47,114 21
Larvae 4 July 0.88 10 1.00 1.08 0.117 19,638 4,909 11
Larvae 11 July 0.95 10 1.01 0.84* 0.060 10,648 2,662 9
Larvae 18 July 0.99 10 1.00 1.16* 0.035 28,336 7,084 12

G. packardii
Eggs 30 May 1.00 7 1.00 0.94* 0.005 873,689 218,422 37
Eggs 6 June 1.00 10 1.00 0.96* 0.005 100,969 25,242 19
Eggs 13 June 1.00 10 1.00 0.98* 0.004 3,263,193 815,798 60
Eggs 20 June 1.00 10 1.00 0.97 0.000 53,999,701 13,499,925 150
Larvae 27 June 1.00 10 1.00 0.98* 0.002 3,263,118 815,779 60
Larvae 4 July 1.00 10 1.00 0.98* 0.003 15,262,158 3,815,540 100
Larvae 11 July 1.00 10 1.00 1.00 0.000 14,228,148 3,557,037 100
Larvae 18 July 1.00 10 1.00 1.00 0.000 48,020,000 12,005,000 150

Values of b that are signiÞcantly different from 1 are followed by * (P � 0.05).
a a and b are calculated parameters of TaylorÕs power law where s2 � amb.
b Sample size needed for 10% Þxed precision.
c Sample size needed for 20% Þxed precision.
d Sample size needed for 95% probability of obtaining at least 1 insect per sample.
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larvae (F� 2.17; df� 5, 684;P� 0.056), orG.packardii
eggs (F � 0.58; df � 5, 684; P � 0.714) or larvae (F �
0.7; df � 5, 684; P � 0.622), and their abundance was
not signiÞcantly greater nearest the woods (Fig. 2a).
When single-cluster samples were analyzed, similar
effectsofproximity towoodedborderswereobserved,
and only the density of A. vaccinii eggs was signiÞ-
cantly inßuenced by plant location (F � 2.38; df � 5,
678; P � 0.038). Although plots of mean values from
single-cluster data (Fig. 2b) suggest increases in larval
populations inside Þelds, these changes were not sig-
niÞcant when ANOVA was used to incorporate re-
peated-measures effects.
Sampling date was a signiÞcant factor in the

ANOVA model for all dependent variables (P �
0.001), regardless of sampling unit used, except for G.
packardii larvae, which were relatively scarce in the
samples (F � 2.33; df � 3, 1,143; P � 0.073 for whole-
plant samples; F � 1.16; df � 3, 1,163; P � 0.325 for
single-cluster samples). No signiÞcant interaction be-
tween sampling date and plant location was detected
for any of the data analyzed, from either the whole-
plant or single-cluster samples.

Discussion

This study demonstrates that the eggs and larvae of
A. vaccinii and G. packardii have a generally aggre-
gated distribution in highbush blueberries. Dual Þts of

the data to both the Poisson distribution and the neg-
ative binomial distribution were likely due to the very
low populations of insects observed on these dates,
particularlywith the single-cluster samples. This over-
lap of Poisson and negative binomial distributions for
very low population densities is not unusual, and has
been noted previously (Taylor et al. 1978, Taylor
1984). The low densities may also account for the
indication of uniform distribution that TaylorÕs power
law parameters gave, which occurredmore oftenwith
the single-cluster samples. This suggests that whole-
plant samples, in which multiple clusters are sampled,
aremore reliable as amethod for detecting population
distributions of these insect specieswhendensities are
low. The Poisson distribution did not Þt the data on
populations of A. vaccinii eggs recorded from either
sampling unit in the Þrst week of surveys, indicating
that this life stage of A. vaccinii, in particular, is
strongly aggregated early in the season.
Estimates of sample sizes required to achieve sam-

ple values within even 20% of the population mean
(i.e., 20% Þxed-precision), indicated that thousands of
either sampling unit would have to be examined, par-
ticularly for the egg stage of both fruitworm species.
Such large sample sizes are clearly impractical for
routine pest monitoring. In contrast, the number of
samples needed to ensure a 95% probability of obtain-
ing at least one insect in every sample was consider-
ably lower for at least the Þrst two weeks of egg
populations of both pest species, regardless of sam-
pling unit used. Calculations indicate that the number
of samples needed in the Þrst two weeks of the fruit-
worm season would not exceed 50, regardless of the
sample unit involved (Table 2). Detection of eggs
early in the growing season is likely to be crucial for
a sampling scheme, in that it can be used to direct pest
control before any fruit are infested. Thus, an ap-
proachbased on the probability of detection produces
a farmoremanageablenumberof samples forpractical
use in a sampling scheme for fruitwormmanagement.
This study also revealed variation in fruitworm

abundancewithdistance fromthewoodedÞeldedges.
A. vaccinii eggsweremore abundant on plants nearest
the wooded edges, a pattern not seen for G. packardii
eggs, or larvae of either species. The signiÞcant effect
of sampling date on most of the insect populations
surveyedwasnotunexpected, sinceeggpopulationsof
both fruitwormspeciesdeclinedsteadilyover the sam-
pling dates included in the analysis, while larval pop-
ulations steadily increased.Only larvae ofG. packardii
did not show this trend, and remained at similar, low
levels across the season (see Table one for means).
The difference in egg abundance of these species

may be due to the presence of wild host plants more
suitable forA. vaccinii than forG. packardii inwooded
edges. Host plants for A. vaccinii that are not known
to host G. packardii include cranberries, beach plums
(Prunus maritima) and dangle-berries (Gaylussacia
frondosa) (Beckwith 1941). These wild hosts would
provide sources of adults that could recolonize Þelds
as the season progresses. However, wild hosts were
not sampled for either species, and the source of im-

Fig. 2. Fruitworm abundance on blueberry plants, rela-
tive to wooded Þeld edges, as estimated by (a) whole-plant
sample units, and (b) single-cluster sample units. Note that
values are summed over rows and Þelds sampled, and means
for A. vaccinii larvae observed in the whole-plant sample
units are shown divided by 10 to allow depiction on one
graph.
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migrating adult moths remains unknown. The greater
abundance of A. vaccinii eggs at the borders was not
seen in the larval stage, and this changemayhavebeen
causedbyborder insecticide treatments to someof the
sampled Þelds. Larvae are unlikely to move far from
the position of eclosion, and behavioral observations
have shown thatmost neonateA. vacciniibore into the
berry on which the egg was laid (R.I., unpublished
data).
This study provides the foundation for the devel-

opment of sequential sampling plans for use in an IPM
program targeting fruitworm pests of blueberry. Fu-
tureworkwill aim toconstruct suchplansbasedon the
sample sizes calculated for 95% probabilities of ob-
taining an insect in each sample, i.e., using a binomial
approach which incorporates the proportion of in-
fested samples observed (Jones 1994, Naranjo et al.
1996). Our future work will also focus on predicting
phenology of these pests using degree-day models,
and understanding the relationship between larval
infestation at harvest with egg and adult populations.
Development of a sampling plan for fruitworms will
contribute to a comprehensive and proactive IPM
program for highbush blueberries to reduce reliance
on synthetic insecticides.
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